コンパイラ・期末テスト問題用紙 (2023 年 02 月 14 日・ 10:30 ~ 12:00)

解答上、その他の注意事項

- Ⅰ.問題は、問 Ⅰ~Ⅲ まである。
- 2. 解答用紙の右上の欄に学籍番号・名前を記入すること。
- 3. 解答欄を間違えないよう注意すること。
- 4. 解答中の文字 (特に a と d)がはっきりと区別できるよう注意すること。
- **5.**持ち込みは不可である。筆記用具・時計・学生証以外のものは、かばんの中などにしまうこと。
- **6.** テストの配点は **70** 点である。合格は毎週の課題の得点を加点して、**100** 点満点中 **60** 点以上とする。

I. (演算子順位法)

次の BNF で表される文法を演算子順位法により構文解析する。

 $E
ightarrow \ \mathbf{id} \ \mid \ E \ \widehat{} \ E \ \mid \ E \ \ast E \ \mid \ E \ \ast E \ \mid \ E \ , \ E \ \mid \ (E)$

ただし、「E」 は非終端記号、「id」,「 $^$ 」,「 $^$ 」,「 $^$ 」,「 $^$ 」,「 $^$ 」,「 $^$ 」,「 $^$ 」,「 $^$ 」,「 $^$ 」,「 $^$ 」,「 $^$ 」。

この文法は曖昧なので、優先順位と結合性について次のように決めておく。

「^」は右結合、「*」は左結合、「<」は非結合、「,」は左結合、であり、「^」は「*」よりも優先順位が高く、「*」は「<」よりも優先順位が高く、「<」は「,」よりも優先順位が高いものとする。

つまり、下表中の左の欄の式は、右の欄の式として解釈される。

式	解釈	式	解釈
a ^ b ^ c	a ^ (b ^ c)	a ^ b , c	(a ^ b) , c
a * b * c	(a * b) * c	a , b ^ c	a , (b ^ c)
a < b < c	(構文エラー)	a * b < c	(a * b) < c
a , b , c	(a , b) , c	a < b * c	a < (b * c)
a ^ b * c	(a ^ b) * c	a * b , c	(a * b) , c
a * b ^ c	a * (b ^ c)	a , b * c	a , (b * c)
a ^ b < c	(a ^ b) < c	a < b , c	(a < b) , c
a < b ^ c	a < (b ^ c)	a , b < c	a , (b < c)

以下の演算子順位行列の空欄 (I) \sim (I5) を <、 \doteq 、>、X のうちもっとも適切なもので埋めよ。 ただし X はエラーを表すものとする。 (教科書などの記法では、エラーは空欄のままとしているが、このテストでは無回答と区別するために明示的に X を書くことにする。)

左右	,	<	*	^	()	id	終
始	<	<	<	<	<	Х	<	÷
,	(1)	(2)	<	<	<	⊳	<	(3)
<	(4)	(5)	(6)	<	<	⊳	<	⊳
*	⊳	⊳	(7)	(8)	<	⊳	<	⊳
^	⊳	⊳	(9)	(10)	<	(11)	<	⊳
(< −	<	<	(12)	<	÷	<	Х
)	(13)	⊳	⊳	⊳	Х	⊳	Х	⊳
id	⊳	⊳	⊳	⊳	Х	⊳	Х	⊳

Ⅱ. (再帰下降構文解析)

対のような BNF で定義された文法に対して再帰下降構文解析ルーチンを作成する。

ただし、「L」,「A」,「N」は非終端記号、「!」,「 $\{a\}$ 」,「 $\{d\}$ 」,「 $\{d\}$ 」,「 $\{d\}$ 」,「 $\{d\}$ 」,「 $\{d\}$ 」,「 $\{d\}$ 」は終端記号である。開始記号(start symbol)は $\{b\}$ である。

- (I) L から導出される<u>終端記号</u>の列で、次の条件を満たすものの例を挙げよ。存在しなければXを記せ。
 - (i) 「id」の直後に「#」が続く。
 - (ii) 「#」の直後に「!」が続く。
 - (iii) 「&」の直後に「(」が続く。
 - (iv) 「)」の直後に「**id**」が続く。
- (2) L, A から左再帰を除去せよ。補助的に導入する非終端記号はそれぞれ L', A' とせよ。後の解答で使用するために、生成規則に丸数字(①, ②, …)を付けておくこと。なお、採点の都合上、順番は次のようにせよ。
 - 左再帰の除去で追加される *ε* は**最後の**選択肢とすること
 - ullet ε 以外の BNF の右辺の選択肢の順は、もとの BNF の選択肢の順と同じにすること
 - 連続した番号をつけること

以下の問は (2). で L,A から左再帰を除去して得られた BNF について答えよ。

- (3) *First(N)* を求めよ。
- (4) Follow(L') を求めよ。
- **(5)** Follow(A') を求めよ。
- (6) 下の予測型構文解析表の N の行を埋めよ。この問題の解答は X, (0, (8) の中から選べ。ただし、(7) は"エラー"を示す。 無回答と区別するために、構文エラーの場合は、必ず (7) を記入し、空欄のまま残さないこと。
- (7) 下の予測型構文解析表の L,L',A,A' の行を埋めよ。この問題の解答は X と ①,②,… ((2) の解答で、BNF の生成規則に自分で付けた番号)から選べ。構文エラーの場合は、必ず X を記入し、空欄のまま残さないこと。

	id	()	!	&	#	\$
L ightarrow							
L' o							
A ightarrow							
A' ightarrow							
N ightarrow							

(8) この文法に対して、入力が文法にしたがっていれば「正しい構文です。」間違っていれば「構文に誤りがあります。」と表示する構文解析プログラムを作成する。プログラム(次ページ)中の指定の部分に入る L, L1, A1, A1, A1, A2, A3, A4, A5, A6, A7, A7, A7, A8, A8, A8, A9, A9,

プログラムの補足説明:

プログラム中では、終端記号は「!」のような I 文字のものは、その字そのもの(の 文字コード)、id などのトークンは、C 言語のマクロ(例えば id の場合は ID)として表現している。入力の終わり (\$) に対応するのは、このプログラムの場合、<u>改行文字 '\n'</u> である。

L,L1,A,A1,N 関数が実行されるときは token という大域変数に、現在処理中(入力の 先頭)の終端記号が代入されている。 eat 関数は、現在 token に入っている値が、引 数として与えられた終端記号と等しいかどうか確かめ、等しければ次の終端記号を token に読み込む。reportError 関数は、「構文に誤りがあります。」と表示し、 プログラムを終了する。

再帰下降構文解析プログラム

```
/* printf(), EOF など */
1 #include <stdio.h>
2 #include <stdlib.h> /* exit() # */
3 #include <ctype.h> /* isalpha() # */
5 /* 終端記号に対するマクロの定義 */
6 #define ID 257 /* \-/2\cdot id */
                    /* 大域変数の宣言 */
8 int token;
10 /* 関数プロトタイプ宣言 */
11 void reportError (void);
12 void eat(int t);
13 int yylex (void);
14
16 void L (void);
17 void L1 (void);
18 void A(void);
19 void A1 (void);
20 void N(void);
22 /*
  ****
                        ********
  /* この部分に 関数 L, L1, A, A1, N の定義を挿入する。
  *****************
25
26 /* ここ以降は解答に直接関係はない。 */
27 void eat(int t) { /* token(終端記号)を消費して、次の tokenを読
   if (token == t) {
28
    /* 現在のトークンを捨てて、次のトークンを読む */
29
    token = yylex();
31
     return;
   } else {
     reportError();
34
35 }
36
37 void reportError(void) {
   printf("構文に誤りがあります。\n"); exit(0); /* プログラムを終了
39 }
40
41 int yylex(void) { /* 簡易字句解析ルーチン */
42 int c;
```

```
43 do { /* 空白は読み飛ばす。 */
     c = getchar();
} while (c == ' ' || c == '\t');
44
 45
 46
 47
    if (c == EOF) { /* ファイルの終わり */
 48
      exit(0);
    } else if (isalpha(c)) { /* アルファベットだったら... */
 49
 50
       return ID;
 51
    } else {
      /* 上立がの条件にも合わなければ、文字をそのまま返す。*/
      return c; /* ';' など */
    }
 54
 55 }
 56
 57 void processLine(void) { /* 各行の処理 */
    L();
if (token == '\n') { /* 入力がブロックしないように改行は特別扱い
 58
 59
 60
      printf("Correct!\n"); /* eat('\n') の前に出力しておく */
    }
 61
 62
    eat('\n');
 63 }
 64
 65 int main(void) { /* main関数 */ printf("Ctrl-c で終了します。\n");
    token = yylex(); /* 最初のトークンを読む */while (1) { /* 無限ループ */
 67
 68
      processLine(); /* 各行を処理する */
 69
 72
     return 0;
 73 }
```

III. (LR 構文解析)

次のような BNF で与えられる文法は曖昧であるが、優先順位・結合性を適切に指定することにより、LR 構文解析表を作成することができる。

ただし、

- いの後の 1. || などは生成規則の番号である。
- 「E」は非終端記号である。「 \mathbf{a} 」,「!」,「*」,「()」,「)」は終端記号である。このうち、「 \mathbf{a} 」はアルファベット \mathbf{l} 文字からなるトークンを表す。
- 。 開始記号($start\ symbol$)は(当然)E である。

bison の出力する LR 構文解析表は次のようになる。(注: bison に -v オプションを指定することによって、LR 構文解析表をファイルに出力させることができる。)

	a	!	*	()	\$		E
0	s ①			s ②				g ③
1								
2	s ①			s ②				g (4)
3	s ①	s 6	s ⑦	s ②		s (5)		g (8)
4	s ①	s 6	s ⑦	s ②	s 9			g (8)
(5)			acc	ept				
6	s ①	1 s2						g 10
7								
8	r s ⑦ r							g (8)
9								
10	s ①	r II	s ⑦	s ②	r	II		g (8)

注: ここで、s ② は、「シフト (shift) して状態 ② へ遷移」、g ③ は、「状態 ③ へ遷移 (go)」、r XII は、「生成規則 XII を使って還元 (reduce)」を表す。

オートマトンの開始状態は ⑩ である。

次の (I) \sim (4) の入力列に対して、<u>下線の記号</u>をシフトした直後 の(つまりシフトしたあと、還元がまだ起こっていないときの)スタックの状態はどのようになっているか?

(I) a a * <u>a</u> (2) a a * ! <u>a</u> (3) a ! a * <u>a</u> (4) (a ! a) * <u>a</u>

下の選択肢($(I)\sim (4)$ 共通)から選べ。(左がスタックの底とする。)

計算用紙

計算用紙

コンパイラ・期末テスト解答用紙(2023 年 02 月 I4 日)

				学籍番号			氏名			
I.			-		•			•		(I × I3)
	(1)		(2)		(3)		(4)		(5)	
	(6)		(7)		(8)		(9)		(10)	
	(11)		(12)		(13)			<u>'</u>	•	•
II.						•	_		(2 × 4, 6, 3,	3, 3, 2, 8, 4)
	(1)	(i)				(ii)			
	(1)	(iii)				(1	iv)			
		$egin{array}{ccc} L & ightarrow \end{array}$				•				
		$oxed{L'} ightarrow ightarrow$								
	(0)									
	(2)	$oxedsymbol{A} ightarrow ightarrow$								
		$ig _{A'} \;\; o$								
	(3)	{								}
	(4)	{								}
	(5)	{								}
	(1)			id	()	!	&	#	\$
	(6)	N o								
				id	()	!	&	#	\$
		L o								
	(7)	L' o								
		A ightarrow								
		A' o								

	(8)								
III. (5 × 4)									
	(1)		(2)		(3)		(4)		
授業・	テストの!	惑想							