第3章 下向き構文解析 (教科書 p.50)

3.1 下向き構文解析の特徴

```
演算子順位法は ... if ~ else などの制御構造の部分には使いにくい
LR 法は ... 人手での作成に向かない
```

アイデア

```
左端のトークン(if, whileなど)を見て生成規則を選ぶ(______)
```

例教科書 p.14 図 1.4 の Statement (改)

```
Statement 
ightarrow 	ext{if (} ConditionExp 	ext{)} Statement ElsePart \ | StatementSeq 	ext{} \} \ | Id = Expression 	ext{;} \ | Id 	ext{(} ExpressionList 	ext{)} 	ext{;} \ | \dots
```

各非終端記号について次の疑似コードで示すような(再帰的な)関数を定義する

```
someType Statement(void) {
    switch (次のトークン) {
    case IF: {
        IF を消費;
        '('を消費;
        c = ConditionExp();
        ')'を消費;
        s = Statement();
        e = ElsePart();
        return c, s, e を使った式
    }
    case '{': {
        '{' を消費;
        s = StatementSeq();
        '}'を消費;
        return s を使った式;
    }
    /* : */
    }
}
```

ここで「消費」とは、(確認して)入力の先頭から取り除くことである。

3.2 再帰下降構文解析 (recursive decent parsing)

- の一種 … 幹から葉へ解析木ができていく
- があるとまずい

```
egin{align*} expr & 	o const \\ & \mid \underbrace{expr} * const \\ StatementSeq & \rightarrow \underbrace{StatementSeq}_{} Statement \\ & \mid \underbrace{\varepsilon} \end{array}
```

<u>下線部</u>のところが、一番左端の再帰的出現である。これをプログラムにしようとすると、

```
int StatementSeq(void) {
    switch (次のトークン) {
        case IF: case WHILE: ... {
            ss = StatementSeq(); /* ← */
            s1 = Statement();
            return ...;
        }
        /* : */
     }
}
```

← のところで入力が変わらないので、止まらなくなる。

必要な準備

• 先頭の共通部分をくくりだす

$$S
ightarrow A B \mid A C$$

は

$$egin{array}{c} S
ightarrow A \ T \ T
ightarrow B \ | \ C \end{array}$$

に書き換える

- する
- BNF の各右辺 α に対して _____を求める
 (First(α) は α の _____)
- $A \stackrel{*}{\Rightarrow} \varepsilon$ となりうる非終端記号 A に対して ______を求める (Follow(A) は A の ______)

再帰下降構文解析のプログラムの作り方

各非終端記号に対して関数を定義する

- I. $N o X_{11}X_{12}\dots X_{1n1}$ | \dots | $X_{m1}X_{m2}\dots X_{mnm}$ に対して、次のトークンがどの $First(X_{i1}X_{i2}\dots X_{ini})$ に属するかによって分岐する($X_{i1}X_{i2}\dots X_{ini}\stackrel{*}{\Rightarrow} \varepsilon$ となる場合は Follow(N) も考慮する)
- II. 右辺の $X_{i1}X_{i2}\dots X_{in_i}$ に対して \mathbf{X}_{i1} (); \mathbf{X}_{i2} (); ... \mathbf{X}_{in_i} (); のように続けて関数を呼出す(ただし、 X_{ij} が終端記号のときは単にトークンを消

費する)

そのあと を繰り返しに書き換える(効率のため)

3.3 アルゴリズム (左再帰の除去) (教 p.57)

$$A
ightarrow A lpha_1 \; \mid \; \ldots \; \mid \; A lpha_m \; \mid \; eta_1 \; \mid \; \ldots \; \mid \; eta_n$$

とする(α_i β_i は構文記号 \underline{M} で β_i の先頭の記号は A ではない。 β_i の先頭以外 にはAは出現しても構わない)

先頭が $eta_1 \sim eta_n$ でそのあとに $lpha_1 \sim lpha_m$ が 0 回以上繰り返すというかたちにな

次のように書き換えることができる

$$A
ightarrow eta_1 A' \mid \ldots \mid eta_n A' \ A'
ightarrow lpha_1 A' \mid \ldots \mid lpha_m A' \mid arepsilon$$

注:

- 最後の ε を忘れない
- 間接的な左再帰(教科書 p.54) があるともう少しや やこしくなるが、そのよう な場合でも除去可能である ことが知られている

ただし、左再帰を除去すると上の図のように構文木の形が変わるため、場合に よっては後処理が必要になる。

問 3.3.1

$$L
ightarrow L$$
 ; $C \mid C$

の左再帰を除去せよ。(L, C は非終端記号、; は終端記号である。)

問 3.3.2

$$L
ightarrow L$$
 ; $C \mid L$, $C \mid C$

の左再帰を除去せよ。(L, C は非終端記号、;, は終端記号である。)

問 3.3.3

```
E	o E + F \mid E \, [\, E \, ] \mid Fの左再帰を除去せよ。(E, F は非終端記号、+, [, ] は終端記号である。)
```

First と Follow の求め方の例 (詳しい説明は教科書 pp.60-61)

例 5.3

$$egin{aligned} E &
ightarrow T \ E' &
ightarrow + T \ E' &
ightarrow \varepsilon \ T &
ightarrow F \ T' &
ightarrow st F \ T' &
ightarrow arepsilon \ F &
ightarrow (\ E \) &
ightarrow \mathbf{id} \end{aligned}$$

$$First(TE') = First(T) = First(FT') = First(F) = \{(, id)\}$$
 $\leftarrow First(F)$ に ε が入っていないので T' や E' は考慮しなくてよい

$$First(FT') = First(F) = \{(, id)\}$$
 $Follow(E') = Follow(E) \cup Follow(E')$
 $Follow(E) = \{), \$\} \leftarrow$ 開始記号の $Follow$ には $\$$ (入力の終) を追加する
 $Follow(T') = Follow(T) \cup Follow(T')$
 $Follow(T) = First(E') \setminus \{\varepsilon\} \cup Follow(E) \cup Follow(E')$
 $= \{+, \}, \$\}$
 $First(E') = \{+, \varepsilon\} \leftarrow \varepsilon$ になりうる場合、 ε を加える
 $(First(T') \succeq Follow(F) は求める必要はない)$

3.4 予測型構文解析表 (教科書表5.1 (p.63))

- First と Follow の結果をまとめて表にまとめたもの
- 構文解析すべき非終端記号 A と入力の先頭の終端記号 a に対して_____ を示す

LL(1) 文法

予測型構文解析表のエントリーに重複がない文法のことを という

- エントリーに重複があると構文解析中に_____が必要となる(通常のプログラミング言語では記述しにくい … Prolog の出番?)
- LL(1) は <u>Left-to-Right Leftmost derivation (1)</u> に由来する。 Leftmost(最左導出)はあとで説明する

表 5.1 教科書 p.63

	id	*	+	()	\$
E ightarrow	i			i		
E' o			ii		iii	iii
T ightarrow	iv			iv		

T' ightarrow		٧	vi		vi	vi
F ightarrow	vii			viii		

 $: First(TE') = \{(, \mathbf{id})\}$

 $:: First(+TE') = \{+\}$

 $:: Follow(E') = \{\}, \}$

 $^{\mathsf{iv}} \ \cdots First(FT') = First(F) = \{\mathtt{(,id)}\}$

 $^{\vee} \because \mathit{First}(*\mathit{FT}') = \{*\}$

 $\forall i :: Follow(T') = \{+, \}, \}$

 $ec{\mathsf{vii}} :: First(\mathbf{id}) = \{\mathbf{id}\}$

 $ec{\mathsf{viii}} :: First((E)) = \{(\}$

入力例x + y * z ただし、x, y, z は id に属するトークンである。

予測	入力	動作
_		
	_	
	_	
	_	
	_	
	_	
	_	
	_	
	_	

姓	田
尔石	未

導出列

木

■ 是左道中 (loftmost derivation)
最左導出 (leftmost derivation)
● 下向き構文解析 (descent parsing) … 先に根に近い節ができる