
Polymorphic Variants in Haskell

Koji Kagawa
RISE, Kagawa University

2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, JAPAN
kagawa@eng.kagawa-u.ac.jp

Abstract
In languages that support polymorphic variants, a single variant
value can be passed to many contexts that accept different sets of
constructors. Polymorphic variants are potentially useful for appli-
cation domains such as interpreters, graphical user interface (GUI)
libraries and database interfaces, where the number of necessary
constructors cannot be determined in advance.

The type system of Haskell, when extended with parametric
type classes (or multi-parameter type classes with functional de-
pendencies), has enough power to mimic polymorphic variants.
This paper, first, explains how to encode polymorphic variants in
Haskell’s type system (Haskell 98+ popular extensions). However,
this encoding of polymorphic variants are rarely used in practice.
This is probably because it is quite tedious for programmers to
write mimic codes by hand and because the problem of ambigu-
ity would embarrass programmers.

Therefore, the paper proposes an extension of Haskell’s type
classes that supports polymorphic variants directly. This type sys-
tem can produce vanilla Haskell codes as a result of type inference.
Therefore it behaves as a preprocessor which translate the extended
language into plain old Haskell. Programmers would be able to use
polymorphic variants without worrying nasty problems such as am-
biguities.

1. Introduction
1.1 Polymorphic Record and Variant Calculus

Extensions of the Hindley-Milner type system with polymorphic
record and variant calculi have been extensively studied and known
for years (e.g. [20, 22, 6]).

Variants and records are dual concepts in the theory of program-
ming languages. Polymorphic record calculi allow a single function
to be applied to many record types with different sets of labels.
We can consider polymorphic record calculi as a basis of object-
oriented programming languages. In this sense, polymorphic record
calculi are widely used in the real world.

On the other hand, polymorphic variant calculi allow a single
value to be passed to many functions which accept different sets
of constructors. Theoretically, they are dual to polymorphic record
calculi, and therefore we could use polymorphic variant calculi in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

order to introduce extensible algebraic datatypes into functional
programming languages. And practically, there are some applica-
tion domains where extensible algebraic datatypes are (potentially)
useful, as we see in the next section.

1.2 Potential Applications of Polymorphic Variants

Suppose that we are writing an interpreter for a tiny language. We
need a datatype for its abstract syntax.

data Expr = Var String | App Expr Expr
| Lambda String Expr

Here,Lambda "x" (Var "x") is an internal representation of
the expression “λx.x.” Then, for example, we can define the “eval”
function for this datatype.

eval (Var x) env = lookup x env
eval (App f e) env = . . . (eval f env) . . .

. . . (eval e env) . . .
eval (Lambda x e) env = . . .

Later, we may want a variation with a new constructor in or-
der to treat specially, for example, full (saturated) function applica-
tions.

data ExprF extends Expr = FullApp ExprF [ExprF]

(This declaration means thatExprF is a datatype which has all
the constructors ofExpr as well as a new constructorFullApp.
Note that this is a tentative syntax used for explanation only and
not the one we will propose in this paper — we will introduce
another declaration form later.) And then, we define, for example,
the “print” function for this extended datatype.

print (Var str) = show str
print (App e1 e2) = . . . print e1 . . .

. . . print e2 . . .
print (FullApp f es) = . . .
print (Lambda x e) = . . . print e . . .

On the other hand, we may want to keepeval being defined
for only Expr, by convertingFullApp into multipleApp’s before
values of the datatype are supplied intoeval.

We can think of several variations and situations where we want
to use slightly different datatypes for abstract syntax trees, which
share, however, the core constructors.

1.3 A Problem of Polymorphic Variant Calculi

As you see, polymorphic variants are potentially useful for some
domains. In practice, however, polymorphic variants are rarely
used. The only practical programming language handling polymor-
phic variants is, to the author’s best knowledge, Objective Caml
since ver. 3 [4]. The Standard ML hasonly oneextensible datatype
exn — the type of exceptions. Haskell can mimic polymorphic
variants using (multi-parameter) type classes. However, there are

1 2006/6/10

some difficulties to be used in practice, which we will explain more
precisely later (Section 2).

We could explain the reason of this situation rather abstractly
using the following table, where Var. stands for polymorphic vari-
ant calculi and Rec. stands for polymorphic record calculi.

existing functions new functions

existing
constructors OK Var.: OK

Rec.: NG

new
constructors

Var.: NG
Rec.: OK OK

In polymorphic record calculi, it is easy to add a new constructor
— when a new constructor (or, in OO methodology, class) is added
by extending an existing one with new fields, functions defined
for the existing constructor can be still applied to objects of the
extended type (left lower). On the other hand, in polymorphic
variant calculi, though it is easy to add a new function defined by
case analysis (right upper), when a variant type is extended by a
new constructor, existing functions that use case analysis cannot
be applied for the new constructor (left lower). Actually, the dual
case of the latter situation corresponds to adding a new function to
existing constructors in polymorphic record calculi (right upper).
It is known to be hard to do this (to add a new method to existing
classes) in object-oriented programming languages, and the “visitor
pattern” [3] is invented for this very purpose.

The fact that it is difficult to add both new data constructors and
new operations without modifying existing code is calledthe exten-
sibility problemand has been extensively studied (e.g.,[2, 23, 17]).
The problem, though symmetrical, seems to have severer impact
on polymorphic variant calculi than on polymorphic record calculi,
simply because functions are harder to define than constructors. For
example, returning toExpr in the above example, we may want to
add imperative features to the core language by extending theExpr
datatype.

data ExprS extends Expr = Setq String ExprS
| Read | Write ExprS

Then, we want to somehow reuse forExprS theeval function orig-
inally defined forExpr. We will explain the difficulty of this kind of
reuse more in detail later (Section 2). Generally, for polymorphic
variants to be useful in practical application domains, we would
need some mechanisms to reuse existing functions for new con-
structors.

1.4 The Plan of the Paper

In this paper, we will show how polymorphic variants can be
encoded in Haskell (Section 2). The encoding needs an extension
of Haskell 98. The extension — multi-parameter type classes with
functional dependencies [12] is, however, popular and available
at least in two popular Haskell implementations Hugs and GHC.
(We also require thatthe monomorphism restrictionis turned off.)
This encoding is not difficult to understand but at least tedious
for programmers to write by hand, and is practially unfeasible.
Therefore, we will propose a type system that directly supports
polymorphic variants and records while avoiding the problem of
ambiguity (Section 3). We will introduce a declaration form for
polymorphic variants as a special form of (parametric) type class
declarations. We also introduce a declaration form for polymorphic
records and a new instance declaration form that treats records
and variants symmetrically. We will explain these new forms by
translating them into plain Haskell codes. Then, we will show
some examples (Section??), discuss relations to existing work

(Section 4), present future directions (Section 5) and summarize
our contribution (Section 6).

2. Encoding Polymorphic Variants in Haskell
In this section, we will explain how to encode polymorphic variants
in Haskell and how to reuse existing functions defined for polymor-
phic variants, solving the problem suggested in the Introduction.
Then, we will make manifest the reason why the enconding is not
used in practice, Still, the encoding itself explains the idea behind
the new declaration forms that we will introduce in the next section.

2.1 Type Classes with Functional Dependencies

Haskell’s type class system is a very general and powerful system
for overloading. However, Haskell’s type class system, as is defined
in Haskell 98, cannot express polymorphic record and variant cal-
culi, especially when we need parametric types such asList and
Tree.

It is known, however, that the system of parametric type classes
[1] — a generalization of Haskell’s type class system — can encode
polymorphic record and variant calculi. Type classes with func-
tional dependencies [12] further generalize parametric type classes
— parametric type classes are special cases where there is only one
independent type parameter per class. Dependencies among type
parameters are represented by a vertical bar in a class declaration:

class Foo a b c | a b → c where ...

Here, a and b, which appear on the left-hand side of→, are
independent parameters, andc, which appears on the right-hand
side of→, is a parameter dependent ona andb. This means that,
if we have two predicatesFoo x y z andFoo x y w that share
the independent parametersx andy in a single predicate set, two
dependent parametersz andw must be unified.

2.2 Encoding Polymorphic Variants

Polymorphic variants can be simply encoded as type classes where
the sole independent parameter appears at the result type positions
of member functions.

class List s x | s → x where
cons :: x → s → s
nil :: s

Then, we can add constructors in subclasses:

class List s x ⇒ AppendList s x | s → x where
unit :: x → s
append :: s → s → s

We also have to define what we can call “standard instance types”
of type classes, the types of whose constructors exactly match the
class declarations

data T_List x =
Cons_List x (T_List x) | Nil_List

data T_AppendList x =
Cons_AppendList x (T_AppendList x)

| Nil_AppendList
| Unit_AppendList x
| Append_AppendList (T_AppendList x)

(T_AppendList x)

If we can use GADT (Generalized Algebraic Data Types)-style
declarations, correspondence betweeen class declarations and data
type declarations will be much clearer.

data T_List :: * → * where
Cons_List :: x → T_List x → T_List x

2 2006/6/10

Nil_List :: T_List x

data T_AppendList :: * → * where
Cons_AppendList

:: x → T_AppendList x → T_AppendList x
Nil_AppendList :: T_AppendList x
Unit_AppendList :: x → T_AppendList x
Append_AppendList :: T_AppendList x
→ T_AppendList x → T_AppendList x

And of course, we need (rather trivial) instance declarations as
well.

instance List (T_List x) x where
cons = Cons_List
nil = Nil_List

instance List (T_AppendList x) x where
cons = Cons_AppendList
nil = Nil_AppendList

instance AppendList (T_AppendList x) x where
unit = Unit_AppendList
append = Append_AppendList

We can encode functions that accept polymorphic variants using
constructors in standard instance types. For example,

lengthL Nil_List = 0
lengthL (Cons_List _ xs) = 1 + lengthL xs

sumA Nil_AppendList = 0
sumA (Cons_AppendList x xs) = x + sumA xs
sumA (Unit_AppendList x) = x
sumA (Append_AppendList xs ys) = sumA xs + sumA ys

Some functions (e.g.sumA) may have the case forappend explic-
itly and other functions (e.g.lengthL) may be without the case
for append. Then the constructors defined inList can be used for
both kinds of functions as inlengthL (cons 1 nil) andsumA
(cons 2 nil). This is what polymorphic variant calculi exactly
mean.

2.3 Reusing Functions

In order to reuse functions defined forList in its subclass, one may
be temped to define a new function as follows:

lengthA (Append_AppendList xs ys) =
lengthA xs + lengthA ys

lengthA (Unit_AppendList x) = 1
-- other constructors
lengthA (Cons_AppendList z zs) =

lengthL (Cons_List z zs)
lengthA Nil_AppendList = lengthL Nil_List

Unfortunately, this does not type check sincezs above may contain
append’s as subcomponents ofzs (e.g., cons 1 (append . . .
. . .)) and sincelengthL is defined recursively.

Using a coercion such as:

coerce_AppendList_List
:: T_AppendList x → T_List x

coerce_AppendList_List
(Append_AppendList Nil_AppendList ys) =
coerce_AppendList_List ys

coerce_AppendList_List (Append_AppendList xs ys) =
Cons (hdA xs) (coerce_AppendList_List

(Append_AppendList (tlA xs) ys))

lengthA xs = lengthL (coerce_AppendList_List xs)

-- we omit definitions for these functions
hdA :: T_AppendList x → x
tlA :: T_AppendList x → x

works for length, however, is in general, not a good idea. It
coerces deeply, that is, it entirely maps all the subcomponents
of type T_AppendList to T_List and loses information. How-
ever, in general, a function may want the subcomponents of type
T_AppendList to maintain their type. For example,

tlA xs = tlL (coerce_ApeendList_List xs)

is not a good definition since its type is

T_AppendList x → T_List x

instead of

T_AppendList x → T_AppendList x.

Thus, it is not easy to reuse functions forList in its subclasses.
This seems to be the very reason why such extensible algebraic
datatypes are not popular — it appears to be no use to extend the
existing type, instead, we would rather rewrite the existing one as:

data List x = Nil | Cons x (List x)
| Append (List x) (List x)
| Unit x

and rewrite all the existing functions at the same time, losing much
modularity. Functions that must be redefined may be scattered in
the source program. Or even worse, no source file may be available
when functions are defined in libraries.

2.4 Open Recursion

Objective Caml has polymorphic variants since version 3.0. As for
the problem presented above, Garrigue [5] proposes usingopen re-
cursion. It is not possible to completely rephrase O’Caml programs
in Haskell. Therefore, we show his solution in pseudo Haskell
codes, which are not actually typable in Haskell. (Of course, with
simple modification, we can make it typable in Haskell.)

The idea is that we add an additional parameter to recursive
functions that abstracts recursive invocation.

lengthL_aux le_rec Nil = 0
lengthL_aux le_rec (Cons _ xs) = le_rec xs

Here, the argumentle_rec abstracts recursive invocation.
Then, it is possible to reuse functions when a polymorphic vari-
ant is extended,

lengthA_aux le_rec (Append xs ys) =
le_rec xs + le_rec ys

lengthA_aux le_rec (Unit x) = 1
lengthA_aux le_rec Nil = lengthL_aux le_rec Nil_
lengthA_aux le_rec (Cons x xs) =

lengthL_aux le_rec (Cons x xs)

by simply “tying the knot” as follows.

lengthL = lengthL_aux lengthL
lengthA = lengthA_aux lengthA

Using this technique, we can reuse existing functions defined for
less constructors.

2.5 Type Classes for Operations

However, in this technique, we must always provide a higher order
function which abstracts recursive function invocation, whenever
we define a recursive function for a variant which is to be extended.
Fortunately, the system of type classes in Haskell can hide such
higher order functions and administrative work from programmers.

3 2006/6/10

Therefore, in Haskell, we can definelength as a member function
of a type class.

class Length a where
length :: a → Int

instance Length (T_List x) where
length Nil_List = length_Nil
length (Cons_List x xs) = length_Cons x xs

length_Nil = 0
length_Cons x xs = 1 + length xs

instance Length (T_AppendList x) where
length Nil_AppendList = length_Nil
length (Cons_AppendList x xs) =

length_Cons x xs
length (Unit_AppendList x) = length_Unit x
length (Append_AppendList xs ys) =

length_Append xs ys

length_Unit x = 1
length_Append xs ys = length xs + length ys

We do not have to write codes that explicitly take ane xtra argu-
ment.

However, still, a problem remains: if we write an expression
such as:

length (cons (1::Int) (cons 2 nil))

the type checker reports that it has an ambiguous type.

(Length a, List a Int) => Int

That is,cons (1::Int) (cons 2 nil) has typeList a Int
=> a andlength has typeLength a => Int. We cannot deter-
mine the type variablea.

For example, Hugs (started with command line option-98)
reports the followng message.

ERROR "XX.hs":xx - Unresolved top-level overloading
*** Binding : xxxx
*** Outstanding context : (Length b, List b Int)

In general, “Ambiguity” means that we have a typeπ ⇒ τ (π is a
set of predicates andτ is a type in a narrow sense) where some free
variables inπ do not appear freely inτ (i.e. FV(π) * FV(τ) where
FV stands for “free variables” as usual.) Then, programmers have
to provide type annotations explicitly in order to disambiguate the
meaning of the program. We can instantiate the type variablea to a
concrete type, in this case,T List Int. Therefore, we can insert a
type annotation as follows:

length (cons 1 (cons 2 nil) :: T_List Int)

Or, when the type of the parameters is not completely known, we
will have to write a little trickier code.

asList :: T_List x → T_List x
asList x = x

foo :: x → x → Int
foo x y = length (asList (cons x (cons y nil)))

2.6 Summary of Encoding

Now, we have finished an encoding of polymorphic variants in
Haskell (+ type class with functional dependencies). It has some
characteristics.

• We represent constructors of polymorphics variants as member
functions of type classes.

• We also define functions that accepts polymorphic variants as
member functions of type classes. This is necessary in order to
make such functions reusable when variants are extended.

However, since the encoding uses type classes doubly — both
for constructors and functions (operations), apparently, there are
two major problems.

• It is tedious for programmers to write such mimic codes by
hand.
• In general, it is not easy to add exact type annotations to all the

necessary places in order to disambiguate type variables.

Haskell programmers instinctively avoid ambiguous types. This ex-
plains why this encoding mechanism has not been popular so far.
However, in this case, ambiguity is not a sign of a pathological
code. In fact, if we happen to instantiate the ambiguous type vari-
able to another candidate type in the above example,

length (cons 1 (cons 2 nil) :: T_AppendList Int)

the meaning remains identical since the both codes use essentially
the same branches forlength.

Therefore, if we can leave the process of encoding to the com-
piler, we can use polymorphic variants more readily, which is the
topic of the next section.

3. Variant and Record Declarations
We would like to design a type system and a set of declaration
forms that directly supports polymorphic variants and has the same
effect as the encoding explained in the previous section.

More specifically, in this section, we will introduce class dec-
laration forms for polymorphic variants (constructors) as well as
for methods (operations). (In order to guarantee that disambigua-
tion of type variables does not affect meanings of programs, we
must distinguish classes for methods from ordinary Haskell type
classes.) We will also introduce instance relations between variants
and methods. Then, we will explain how to translate these new dec-
laration forms into plain Haskell code.

The new system has to do the following tasks:

• to define “standard instance types” for variants, and
• to declare instance relations between “standard instance types”

and related classes.

Programmers do not have to know names of standard instance types
and their constructors, they are “behind the scene” — they are all
used completely internally by the compiler and programmers never
use them explicitly in their programs.

The type system also has to do the following:

• to insert type annotations when ambiguous types concerning
variant types appear.

Among them, the last one is non-trivial and we introduce a slight
modification of the type inference algorithm for this purpose.

3.1 Variant Declarations

We introduce a new class declaration form in order to define poly-
morphic variants. The declaration form for polymorphic variants is
almost the same as that of parametric type classes except that the
keywordvariant is used. (In the following, we use the syntax for
parametric type classes: where we write the sole independent pa-
rameter on the left-hand side of the symbol∈, for we do not need
the full power of type classes with functional dependencies and the
notation of the former is a little more compact.)

variant π ⇒ α ∈ VariantName β where
Constr1 :: τ1

1 → · · · → τ
n1
1 → α

4 2006/6/10

. . .
Constrm :: τ1

m → · · · → τnm
m → α

This introduces new symbolsConstr1, . . . , Constrm. (We will
use identifiers beginning with capital letters for variants.) The re-
striction forvariant declarations is:

• The independent variableαmust appear as the type of the return
value of functions. That is, functions must have types of the
form · · · → α. (It is possible to have a constructor with no
argument — likeNil in the next example.)

The contextπ specifies superclasses as inclass declarations in
the current Haskell. Of course, super classes must be also variant
classes. However, multiple inheritance is allowed.

Variant declarations are straightforwardly translated as type
class declarations. That is, a declaration:

variant α ∈ VariantName β where . . .

becomes a type class declaration:

class VariantName α β | α → β where . . .

where the type variable on the left-hand side of∈ becomes the sole
independent parameter.

For example, the type of lists can be defined as:

variant xs ∈ List x where
Nil :: xs
Cons :: x → xs → xs

The difference from ordinarydata declarations is that we can
add new constructors later:

variant xs ∈ List x ⇒ xs ∈ List2 x where
Cons2 :: x → x → xs → xs

variant xs ∈ List x ⇒ xs ∈ AppendList x where
Unit :: x → xs
Append :: xs → xs → xs

(Traditionaldata declarations can be considered as “final”variant
declarations which cannot have subclasses.) In this example, we
can think ofCons2 as a “cdr-coded” list constructor (with only
two elements, — of course, you can add as many elements as you
wish). The variant declarations forList andAppendList are ex-
actly translated into the type class declarations for the same names
in the previous section.

Alternatively, it would be possible to adopt a syntax similar to
data declarations.

variant List x = Nil | Cons x (List x)

However, recursive constructors such asCons has arguments whose
type contains the “self” type — the type of the return value. Their
types must change when the variant type is extended. Here, we
prefer to use aclass-style syntax which makes this fact explicit by
a type parameter (i.e. xs). (Another reason why we do not adopt a
data-style syntax is a vague conjecture that variants will be further
useful if they are combined with GADT (Generalized Algebraic
Data Type)’s.)

Though we introduce variants as a special case of type classes,
there is no need to declare datatypes (other than the *standard*
instance types) as instances of variant classes.

• A variant class has no instances (other than its *standard* in-
stance type and the *standard* instance types of its subclasses).

3.2 Record Declarations

We also introduce a new declaration form called record declarations
in order to define functions (methods) that operate on variants.

This is because if we did not treat record classes separately from
ordinary Haskell classes, the ambiguity problem would remain —
that is, the meaning of an expression would depend on the type
which an ambiguous type variable is instantiated to. On the other
hand, if we separate record classes from ordinary type classes,
when an ambiguous type variable only concerns variant class and
record class predicates, the meaning does not depend on the type it
is instantiated to.

In “A Second Look at Overloading” [19], Odersky, Wadler
and Wehr propose System O and solve the problem of ambiguity
of type classes by putting a simple restriction on the types of
symbols that can be overloaded. System O requires that overloaded
symbols should be functions and that the type of the first argument
should determine the actual implementation. (That is, overloaded
functions must have typeα → · · · whereα is the placeholder
variable of the class.) System O can encode polymorphic record
calculi and more — it can, so to speak, add new “methods” or
“fields” to existing datatypes.

We impose exactly the same restriction for method declarations
in record classes. Moreover, in the sense that variant declarations
have a symmetric restriction that overloaded symbols must have
type · · · → α whereα is the independent parameter, this paper
proposes a system that can be considered as a symmetric extension
of System O.

We use the keywordrecord instead ofclass to clarify that
each overloaded operator obeys the System O restriction. We use
the wordrecord, because it can be seen as definition of selectors
(methods) for records.

record π ⇒ α ∈ RecordName β where
method1 :: α → τ1

. . .
methodm :: α → τm

This introduces new symbolsmethod1, . . . , methodm. Here,α is
the independent type variable andβ is a sequence of type param-
eters dependent onα. The contextπ specifies superclasses in the
same way as inclass declarations in the current Haskell. Its mean-
ing is the same as that of parametric type class declaration except
for the restriction on the form of types:

• The independent variableα must appear as the type of the first
argument of each function. (Functions must have types of the
form α → · · · .)
Therefore, a declaration:

record α ∈ RecordName β where . . .

becomes a type class declaration:

class RecordName α β | α → β where . . .

where the type variable on the left-hand side of∈ becomes the sole
independent parameter.

For example, a declaration:

record a ∈ Length where
length :: a → Int

is exactly translated into the type class declaration for the same
name in the previous section.

**

3.3 Instance Declarations

So far, we can considerrecord andvariant declarations as spe-
cial cases ofclass declarations in the traditional Haskell. Instance
declarations are, however, different from the traditional ones.

5 2006/6/10

In our system, variant classes cannot have instances in the usual
sense. Instead, we declare a variant class (v) as an instance of a
record class (r). It must have the form:

instance π ⇒ v τ 3 υ ∈ r σ where
methodm (Constrn p1 . . . pkn) = em

. . .

Here,υ between “3” and “∈” intuitively stands for the “self type”
(the type of the first argument ofmethodm) and may appear inπ.

In order to keep the typing rule for instance declarations simple,

• we restrict constructors of polymorphic variants only appear
as the toplevel constructor of the first argument in method
definitions in instance declarations.

This is probably the simplest way to guarantee that methods in the
record class accepts all the constructors in the variant class. If we
allowed polymorphic variants to appear in other places in patterns,
we would need more elaborate typing rules for patterns to guarantee
that a certain method accepts all the variants in a certain set of
variant classes. Moreover,

• we do not allow constructors of polymorphic variants appear
outside of instance declarations.

Note that whenv is a subclass of another class, we only provide
cases for newly added constructors inv. Therefore, there is only
one instance declaration for a specificmethod /Constr pair.

instance List x 3 xs ∈ Length where
length Nil = 0
length (Cons x xs) = 1 + length xs

instance List2 x 3 xs ∈ Length where
length (Cons2 x y xs) =

length (Cons x (Cons y xs))

instance AppendList x 3 xs ∈ Length where
length (Unit x) = 1
length (Append xs ys) = length xs + length ys

Then, since the semantics ofmethodm does not depend on
typing, no ambiguitywill arise. In order for this to work, when
we check the type ofmethodm in the aboveinstance declaration,
we must take into account thatmethodm may be added cases
for new constructors in subclasses ofv later and therefore, the
current method definition forConstrn might be later used with
cases for new constructors. Then, we must make sure that the type
of the method is not overly restricted so that it does not prevent
later extensions. Therefore, the type checking rule for the instance
declaration must ensure that:

• If the type ofmethodm andConstrn are declared in variant and
record declarations respectively as:

variant α ∈ v β where
Constrn :: κ1 → · · · → κkn → α

record α ∈ r γ where
methodm :: α → µm

the type ofmethodm in the above instance declaration should
be as general as:

ρ ⇒ υ → µm[σ/γ]

where we assume the type ofConstrn to be

κ1[τ/β, υ/α] → · · · → κkn[τ/β, υ/α] → υ

andρ must be implied byπ ∪ { υ ∈ v τ, υ ∈ r σ } andυ stands
for the “self type”.

Moreover, the instance contextπ is subject to the same restriction
as the traditional type classes:π must imply the contexts of all the
superclass instances ofr andv [21, page 47].

3.4 Type Inference

Basically, the core part of the type inference algorithm does not
need to be changed and remains the same as the one described in
[9]. We have to, however, change the behavior of “context reduc-
tion” since the form of instance relations has changed. Then, what
should the type checker do for a type constraint set that contains
both record and variant constraints?

Intuitively, it finds ambiguous types, checks whether we can in-
stantiate the ambiguous type variable to a certain standard instance
type, and then actually substitutes the ambiguous type variable to
the standard instance type of the relevant variant classes.

The context reduction process of Haskell can be regarded as
a special case ofsimplification in the terminology of Jones [10].
In our system, the corresponding process should be regarded as a
combination ofsimplificationand improvementsince it involves a
type substitution. We would formalize the process as a function
namedimpr. It returns a pair of type substitution and a simplified
type constraint set. Two auxiliary functionscheckandfind are used
in the definition ofimpr.

impr(P) = let V = all variant class constraints inP

R = all record class constraints inP

VR = { (vσ, α, r τ) | (α ∈ vσ) ∈ V, (α ∈ r τ) ∈ R }
in

if ∀ (vσ, α, r τ) ∈ VR. check(vσ, α, r τ,P)

then (idSubst,P)

else let(vσ, α, r τ) bean arbitrary pair

s.t.¬check(vσ, α, r τ, P)

(Q, v γ, ζ, r δ) = find(v, r)

S = mgu((γ, ζ, δ), (σ, α, τ))

(S′,P′) = impr(S (P∪ Q)) in

(S′ ◦ S,P′)

check(vσ, α, r τ, P) = let (Q, v γ, ζ, r δ) = find(v, r) in

if there is a substitutionS

s.t. S(γ, ζ, δ) = (σ, α, τ) and S π ∈ P

then TrueelseFalse

find(v, r) = if there is an instance declaration:

instance Q⇒ v γ 3 ζ ∈ r δ where . . .

then (Q, v γ, ζ, r δ)

elsefailure

We assume that the standard improvement process for polymor-
phic type classes [10,§ 3.1] (namely, if bothα ∈ c τ andα ∈ cσ
are inP, the type parametersτ andσ must be unified) is performed
prior to our own simplification and improvement.

Note that, unlike context reduction in Haskell, the type checker
usually do not discard any type constraints since other type con-
straints may be added later which may interact with them. The size
of the type constraint set gets larger during recursive calls ofimpr.
The impr function always terminates since it does not introduce
new type expressions and the number of record and variant classes
is limited.

6 2006/6/10

The first element of the result ofimpr is a type substitution
which is applied to the type and the type environment. The second
element of the result replaces the type constraint set. Using the
notation of [10], it is written as:

Q | T A `W E : ν (T′,P) = impr(Q)
P | T′T A `W E : T′ν

It is not necessary to precisely specifywhenthis simplification and
improvement process is invoked. It must be done, however, at least
before the type is presented to human and before the disambigua-
tion process explained in the next paragraph takes place.

Whenα is an ambiguous type variable inP⇒ τ, we substitute
α with the standard instance type of a set of the variant constraints
given toα. Then, all the type constraints of the form “α ∈ . . . ”
can be safely discarded fromP. At the same time, the type checker
inserts a type annotation in the source program. (Ambiguous types
can arise mainly after checking function applications.)

We have a prototype implementation of the proposed type in-
ference algorithm by extending the engine of “Typing Haskell in
Haskell” [11]. Most part of modification is necessary to incor-
porate functional dependencies. Therefore, the only essential en-
hancement in our implementation is theimpr function presented
above.

4. Related Work
We mentioned some related work already in the Introduction. In
this section, we will refer to some others.

In [15], in order to construct modular interpreters, Liang, Hudak
and Jones propose using a datatypeOR that represents the disjoint
union of two types, and a kind of subtyping relation:

data OR a b = L a | R b

class SubType sub sup where
inj :: sub → sup
prj :: sup → Maybe sub

An apparent drawback of their approach is inefficiency of data rep-
resentation, sinceOR tend to be deeply nested. Here is an example
taken from their paper.

type Term =
OR (OR TermA (OR TermB (OR TermF

(OR TermL TermR))))
(OR TermN (OR TermC (OR TermP TermT)))

More compact representation is desirable.
The type system of O’Haskell [18] has the notion of extensi-

ble datatypes. Unlike our system, it is based not on polymorphic
record/variant calculi but onsubtyping. Though superficially, the
results look alike, their internal mechanisms are quite different. A
drawback of such a subtyping approach is loss of information when
we create heterogeneous collections.

Haskell++ [7] also supports a form of code reuse when we
define a new datatype similar to an existing datatype. Without
polymorphic variants, we have to represent heterogeneous lists
using existential types [14], which also leads to loss of information.

The type system of Mondrian [16] allows both code reuse and
heterogeneous lists in compensation for loss of some type safety
property. This means that “message not understood” errors arise
not in compile time but in run time.

HList [13] is a quite different approach to heterogeneous col-
lections. Though it seems to concern much broader area than
ours, as for heterogeneous collections, our approach seems more
lightweight as we do not need type-level programming.

In “Extensible Algebraic Datatypes with Defaults,” Zenger and
Odersky [23] also tackle the problem of code reuse. Though it is

presented as a new design pattern for Java, the underlying idea
that newly added constructors can select a case branch for existing
constructors seems to overlap with ours. In their system, the only
possible existing case they can select isthe implicit default case.
Though it may be possible to extend their proposal to select cases
other than the default case, it is likely that it would become too
complex to write by hand.

Millstein, Bleckner and Chambers [17] also proposes a system
in which both functions and datatypes are extensible. Though it
can handle binary methods (such asequalityandset union) more
elegantly than ours, it does not deal with type inference.

5. Future Work
5.1 Binary Methods

In our system, it is possible to define binary methods, though it may
look awkward. Binary methods are methods which take another
argument of the same variant class.

record a ∈ Eq where
(==), (/=) :: a → a → Bool

The syntactic restriction imposed on the instance declarations al-
lows us to avoid the problem caused by “binary methods.”

According to the limitation introduced in§ 3.3, we do not allow
an instance declaration such as:

instance a ∈ Eq ⇒ List a 3 x ∈ Eq where
Cons a as == Cons b bs = a==b && as==bs
Nil == Nil = True
Cons _ _ == Nil = False
Nil == Cons _ _ = False

because it uses polymorphic variants in the pattern for the second
parameter of the method. If we accepted this instance declaration,
it would be possible to declare another instance such as:

variant a ∈ Foo where
Foo :: Int → a

instance Foo 3 x ∈ Eq where
Foo n == Foo m = n == m

Nothing prevents a predicate set such as(a ∈ Foo, a ∈ List
Int, a ∈ Eq) and as a result, an expression such as “Foo 1 ==
Cons 1 Nil” would become typable but would cause a runtime
error.

Then, how should we define equalities forList (andList2)?
We can circumvent this difficulty if we introduce an auxiliary class:

record x ∈ EqList a where
eqCons :: x → (a, x) → Bool
eqNil :: x → Bool

instance (a ∈ Eq, x ∈ Eq) ⇒
List a 3 x ∈ EqList a where

eqCons (Cons x xs) (y, ys) = x==y && xs==ys
eqCons Nil (_, _) = False
eqNil (Cons _ _) = False
eqNil Nil = True

instance x ∈ EqList a ⇒ List a 3 x ∈ Eq where
(Cons x xs) == ys = eqCons ys (x, xs)
Nil == ys = eqNil ys

This is a well-known technique to deal with multimethods [8]. It
becomes possible to declare subclasses ofList as an instance of
EqList later.

In practice, however, this is awkward and it would be necessary
to automatically generate this kind of tedious instance declarations.

7 2006/6/10

5.2 Default Definitions

In practice, many polymorphic variants would have similar behav-
iors for most method definitions. For example, as forCons2 and
Append, we will define most methods as follows.

foo (Cons2 x y zs) = foo (Cons x (Cons y zs))
foo (Append xs ys) =
foo (if isNull xs then ys

else Cons (hd xs) (Append (tl xs) ys))

On the other hand, the current Haskell permits classes to have
definitions of “default” methods.

class a ∈ Eq where
(==), (/=) :: a → a → Bool
x /= y = not (x == y)

Then, it would be possible to think of a similar mechanism
for variants where the method definitions for a constructorC are
automatically generated from a default definition.

We only have to write an empty instance declaration to get a
method forCons2. For example,

instance Cons2 x 3 a ∈ Length where {}

Now, we can passe :: List2 x to, for example,length ::
xs ∈ Length ⇒ xs→ Int. The constructorCons2 is converted
to twoCons’s as is defined by the default declaration. Of course, if
we do not declareList2 as an instance ofLength, the expression
length (Cons2 1 2 Nil) is untypable.

We must investigate what kind of default mechanism is easy to
use and intelligible to users. There are some questions to be an-
swered. For example, if both the method and the variant involved
in an instance declaration have default definitions, which has pri-
ority? What typing rule should apply to default definitions? For
example, the default definition forAppend has the constraint that
three methodsisNull, hd andtl must be defined for the type in
question. What kind of type constraints should be allowed?

6. Conclusion
In this paper, we have explained how we can encode polymorphic
variants in Haskell’s type classes. Then, we have proposed a type
system for polymorphic records and variants for Haskell. We have
introduced:

1. a declaration form for polymorphic variants as a special case of
parametric type classes,

2. a new instance declaration form between a “record” class and a
“variant” class and rules corresponding to “context reduction”
in the traditional Haskell, which can be explained as “simplifi-
cation” and “improvement” in the terminology of Jones [10].

Moreover, the meanings of programs can be given independently of
types and we need not worry about ambiguous type errors. Instead
of avoiding ambiguous types altogether, the type system makes use
of ambiguities even affirmatively.

The proposed type system can produce vanilla Haskell (Haskell
98 + type classes with functional dependencies) codes as a result
of type inference. Therefore, the type system can behave as a
preprocessor, and we can give the meanings of programs in the
extended type system using translation to plain Haskell.

Acknowledgments
The author is grateful to Jacques Garrigue for valuable comments
on previous drafts of this paper. Comments from anonymous refer-
ees on earlier versions of this paper were also helpful to simplify
and to improve both the idea and the presentation.

An preliminary version of this paper is presented at APLAS’02
(The Third Asian Workshop on Programming Languages and Sys-
tems) whose proceedings are unpublished. The author is also grate-
ful to the attendance of the workshop for helpful comments.

References
[1] K. Chen, P. Hudak, and M. Odersky. Parametric type classes. InACM

Conf. on LISP and Functional Programming, June 1992.
[2] R. B. Findler and M. Flatt. Modular object-oriented programming

with units and mixins. InProceedings of the 1998 ACM SIGPLAN
International Conference on Functional Programming (ICFP ’98),
1998.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns
— Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[4] J. Garrigue. Programming with polymorphic variants. InML
Workshop, Sept. 1998.

[5] J. Garrigue. Code reuse through polymorphic variants. InFOSE
2000, Nov. 2000.

[6] B. R. Gaster and M. P. Jones. A polymorphic type system for
extensible records and variants. Technical Report Technical Report
NOTTCS-TR-96-3, Computer Science, University of Nottingham,
Nov. 1996.

[7] J. Hughes and J. Sparud. Haskell++: An object-oriented extension of
Haskell. InHaskell Workshop 1995, 1995.

[8] D. H. H. Ingalls. A simple technique for handling multiple
polymorphism. InConference proceedings on Object-oriented
programming systems, languages and applications (OOPSLA) 1986,
pages 347–349, 1986.

[9] M. P. Jones. Qualified Types: Theory and Practice. PhD thesis,
Programming Research Group, Oxford University Computing
Laboratory, July 1992.

[10] M. P. Jones. Simplifying and improving qualified types. Reserch
Report YALEU/DCS/RR-1040, Yale University, June 1994.

[11] M. P. Jones. Typing haskell in haskell. InProceedings of the 1999
Haskell Workshop, pages 9–22, Oct. 1999.

[12] M. P. Jones. Type classes with functional dependencies. In
Proceedings of the 9th European Symposium on Programming, Mar.
2000. LNCS 1782.

[13] O. Kiselyov, R. L̈ammel, and K. Schupke. Strongly typed heteroge-
neous collections. InProc. of the ACM SIGPLAN Haskell Workshop
2004, pages 96–107, Sept. 2004.

[14] K. Läufer. Type classes with existential types.Journal of Functional
Programming, 6(3):485–517, May 1996.

[15] S. Liang, P. Hudak, and M. Jones. Monad transformers and
modular interpreters. InConference Record of POPL’95: 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 333–343, Jan. 1995.

[16] E. Meijer and K. Claessen. The design and implementation of
Mondrian. InProceedings of Haskell Workshop 1997, 1997.

[17] T. Millstein, C. Bleckner, and C. Chambers. Modular typechecking
for hierarchically extensible datatypes and functions. InProc.
the 2002 ACM SIGPLAN International Conference on Functional
Programming, pages 110–122, Oct. 2002.

[18] J. Nordlander. Polymorphic subtyping in O’Haskell. InProc.
the APPSEm Workshop on Subtyping and Dependent Types in
Programming, 2000. Ponte de Lima, Portugal.

[19] M. Odersky, P. Wadler, and M. Wehr. A second look at overloading.
In Proc. ACM Conf. on Functional Programming and Computer
Architecture, pages 135–146, June 1995.

[20] A. Ohori. A polymorphic record calculus and its compilation.ACM
Transactions on Programming Languages and Systems, 17(6):844–
895, Nov. 1995.

[21] S. Peyton Jones, J. Hughes, et al.Haskell 98: A Non-strict, Purely
Functional Language, Feb. 1999. http://www.haskell.org/
onlinereport/.

8 2006/6/10

[22] D. Rémy. Typechecking records and variants in a natural extension of
ML. In Annual ACM Symp. on Principles of Prog. Languages, pages
77–88, January 1989.

[23] M. Zenger and M. Odersky. Extensible algebraic datatypes with
defaults. InProceedings of the International Conference on
Functional Programming, September 2001.

9 2006/6/10

